
160 P I E Z O - O P T I C  B I R E F R I N G E N C E  IN NaCI  S T R U C T U R E  C R Y S T A L S .  I I I  

This method could also be adopted to determine the 
reversal wavelengths for q n -  qx2. 

APPENDIX 

E'=  4 ( C n -  C,2) (CI! + 2C,2)C44 
C 

cr~,- 
2G1C44-(Cn-C12) (Cu + 2C,2) 

. . . . . . . . . . . . . .  

C 

where 

2C12C44 
cry,-- C ' 

C= 2CHC44-I-(CxI- C12) (C u "q- 2C12) • 
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Derivation and Experimental Verification of the Normalized Resolution Function for 
Inelastic Neutron Scattering* 
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Based upon the work of Cooper & Nathans, an expression for the normalized resolution function of a 
triple-axis neutron spectrometer is derived and tested experimentally. The formalism is extended to 
show the explicit dependence of the integrated intensity of a sharp excitation spectrum on all of the 
relevant instrumental parameters. Extensive measurements of the integrated intensities of phonons in 
copper have been carried out for a wide range of all adjustable parameters. The experimentally deter- 
mined intensities are found to be in good agreement with the calculated values. 

1. Introduction 

Resolution effects in triple-axis neutron spectrometers 
were first considered by Caglioti, Paoletti & Ricci 
(1958) and Collins (1963). These authors considered 
the effect of horizontal collimations and mosaic 
spreads for special arrangements of relaxed collima- 
tions. Stedman (1968) and Bjerrum Moiler & Nielsen 
(1970) derived expressions for the dependence of the 
intensity on the horizontal collimation, mosaic spread 
of the monochromator and analyzer crystals and Bragg 
angles of those crystals. Expressions for the width of an 
inelastic peak were derived by Stedman & Nilsson 
(1966), Cooper & Nathans (1967) and Nielsen & 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

t Work supported by the U. S. Atomic Energy Commission 
Grant No. AT(30-1)-4084 Mod. 1. 

:I: Present address: Ames Laboratory-USAEC and Depart- 
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Bjerrum Moiler (1969). Though derived by different 
methods, the expressions for the peak width are in 
mutual agreement. None of these authors, however, is 
concerned with the correct normalization of the resolu- 
tion function since they were interested in line shapes 
rather than in accurate measurements of scattering 
intensities. 

Although an essentially correct formulation of the 
resolution-function normalization has existed in our 
laboratory for several years [see for example Samuel- 
sen, Hutchings & Shirane (1970)], in the course of a 
study of phonon intensities in zinc we felt it necessary 
to formalize the derivation and to test experimentally 
the salient features of the results. To this end, we have 
extended the resolution-function calculations of Cooper 
& Nathans (1967)* to give a closed analytic expression 
for the normalized resolution function of a triple-axis 
spectrometer. This result is used to derive the inte- 

* See Appendix. 
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grated intensity for a constant Q scan of a sharp 
excitation, i.e. one with scattering law of the form 
S(Q, co)oc~(co-co(q)). These expressions are in sub- 
stantial agreement with those of Tucciarone, Lau, 
Corliss, Delapalme & Hastings (1971).* We also agree 
with the formulation of Dorner (1972) derived by a 
geometric method. 

A series of measurements of integrated phonon 
intensities has been carried out using a single crystal 
of copper. The parameters of our formulation, 
Q, kr, k~,hco and horizontal and vertical collimations, 
were varied over as wide a range as was readily avail- 
able. To within experimental error, the measured 
integrated intensities agree with the calculated values. 

2. Derivation of the normalization Ro 

It has been shown by Cooper & Nathans (1967) that 
for energy transfer hco=(h2/2m)(k~-k})and  wave 
vector transfer Q = k ~ - k  f, the resolution func.ion of a 
triple-axis spectrometer can be written 

R(Qo + AQ, COo + Aoo) 
4 4 

=Ro exp { -½  ~ ~ Mk~XkX~}, (1) 
k = l  1 = 1  

where X1,Xz, Xa are the Cartesian components of AQ 
and X4 is Aco. X1 is chosen parallel to -Q0, X3 is verti- 
cal (perpendicular to the scattering plane). Q0 and o)0 

* See Appendix. 

NEUTRON 

(0) 

~ogOCo fi9"O 

///"\,A 

Fig. 1. Schematic representation of the triple-axis neutron 
spectrometer.; 

are the nominal setting of the instrument as defined by 
the most probable wave vectors k, and kv. Ro depends 
on Qo and COo as well as on the instrumental param- 
eters. 

There are nine factors included in Ro which arise 
from different steps in the derivation of (1). Written 
explicitly, these are 

Ro =~o . eo . POM " Poa • NM • Na • d.  Rox . Ro~ 

where 
(.~_~ 1 ) -1/2 

POM=(2rC)I/2 1 + (2r/Msin0M) 2 

1 
PoA = (2z01/2 1 + (2r/~ sin 0A) 2 

PM 
NM =(2ZC)-I/2 ( 2rl~ sin OM ) 

Na=(2=)-~lZ(2rl,aPslnOa) 

J=m/( hk~ka~ sin 20s) 

Rox= (2rc) */z (A') -x/2 

Ro~ = (2z) ~/z :~2 . . 2  ~- .2 
k~ll T t~12 ) 

(2) 

The notation is primarily that of Cooper & Nathans 
(1967). fl~ and cq are the vertical and horizontal col- 
limations respectively where i--0,1,2,3 refers to the 
inpile, monochromator-to-sample, sample-to-analyzer 
and analyzer-to-detector collimators as shown in Fig. 
1. r b and r/j are the horizontal and vertical mosaic 
spreads of crystal j while P~ is the reflectivity of that 
crystal as defined below, j =  M or A refers to the mono- 
chromator or analyzer crystal, eD is the efficiency of 
the detector. ~0 is the flux of the reactor defined such 
that ~odkldQ is the flux in a volume dkt about k t and 
dr2 about f2. For example, if the reactor follows a 
Maxwellian distribution, ~0 is given by 

(00 q)= -~--~ (k~/k~.) exp (-k~/k~.) (3) 

where ~00 is the total flux of the reactor and where k r  is 
such that h2k2T/(2m)=kBT, T is the temperature of the 
moderator, kB is the Boltzmann constant. 

We assume that the flux in the detector is the product 
of the flux of neutrons incident on the spectrometer 
and the normalized probability of passage through the 
spectrometer. The basic steps in the derivation of 
equation (1) are: 

(A) Define the probability that a neutron of given 
wave vector k will pass through each component of 
the spectrometer in terms of the variation in the magni- 
tude of k and the horizontal and vertical divergence 
angles. Assuming a sample of unit cross section, the 
probability of passage through the spectrometer is the 
product of the probabilities of the components. 

(B) Transform to variables x~,yl,zl and x2,Y2,Z2 the 

A C 29A - 4* 



162 R E S O L U T I O N  F U N C T I O N  FOR I N E L A S T I C  N E U T R O N  S C A T T E R I N G  

Cartesian components of Akx and AkF respectively. 
(C) Transform to variables Xt, X2, 2"3, X4,xx,zl as 

defined above. 
(D) Integrate over xl. 
(E) Integrate over zl. 

It should be noted that the probabilities as defined in 
step A determine the form of the flux (per unit solid 
angle per unit incident wave vector) given above. The, 
cross section to be used to represent the sample must 
be a partial cross section with respect to wave vector 
and solid angle. We note that the choice of variables 
in step B is arbitrary in that each variable is eliminated 
either by a successive transformation (step C) or by 
integration (steps D and E). 

The factor J given in (2) is just the Jacobian of the 
transformations in steps B and C. Rox is the result of 
the integration over x~ while R0= is the result of that 
over zt. In Cooper & Nathans (1967) there is defined 
a P0M arising from integration over the vertical 
divergence angle before the monochromator. P0a is 
the corresponding term for the angle after the analyzer. 

The probability of passage of a neutron through a 
crystal j as a function of horizontal and vertical 
divergence angles, 6n and 6v, is given by 

pj(6.6v)= Nj exp {_½ ( Szn + 6~, (4) 
rL~ (2r/ ;  sin O,)z,, " 

The total probability of passage is given by 

I I pj(6nfv)dfnd6v=Pj I exp {_ ½ 62 I J dd.. (5) 

This relation defines Nj as given above. 
Combining terms and simplifying gives the normal- 

ization R0, 

m 
Ro=2nceoPMPa z 3 {A'(aZn +aZx2)}-u2 

hklk~ sin 20~ 

x [\fl2+(2r/~sin~M-)z ) (fl]+(2rfasinOa)Z]j . (6) 

Werner & Pynn (1971) have considered the spectro- 
meter resolution with no collimation before the mono- 
chromator or after the analyzer. Making allowances 
for different definitions, their results can be shown to 
follow from equation (6). Equation (6) also agrees with 
the normalization derived by Tucciarone, Lau, Corliss, 
Delapalme & Hastings (1971) if one includes a cor- 
rection brought to the attention of these authors by B. 
Dorner and one of the present authors (NJC). Their 
note 25 mentions this correction but should read, 'P0. • • 
must be multiplied by the factor l/(2nr/~,r/~).' 

3. Intensities for a planar dispersion~surface 

The measured intensity I is given by the convolution 
of the resolution function with the scattering cross 
section a, 

+ AQ, O9o + Aog)d(A Q)d(Ao.)). (7) 

As was stated above, this cross section must be written 
in terms of dAkrdf2F, thus 

d 2 o  " hkF d2a 
a(Q0 + AQ, og0 + A ( o ) =  -cl-,4-k-~--db~- = - r n  .... dogdf2 " 

(8) 

Although the integration in (7) can always be per- 
formed numerically, it can be carried out analytically 
if we assume that, as a first approximation, the 
dispersion surface is planar. If this planar dispersion 
surface is characterized by a slope C=-gradqco(q) ,  
then the cross section contains a delta function which 
restricts "¥4 to the plane X4= W - C 1 X 1 -  C2X2-C3X3. 
This restriction is pictured in Q, 09 space in Fig. 2. The 
assumption of a planar dispersion surface is approx- 
imately valid locally in many cases since it is only 
necessary that the assumption hold over that volume 
where the resolution function is appreciable. The cross 
section can now be written 

/ 
/ \ T //~z~" \,,,-RESOLUTION 

to FELLIPSOID 
I AT t > O  

I / \ .I /DISPERSION / / \  1' / SURFACE / /  ,; / "=-°° 
L i \," ' °  

N ELLIPSOID | / -'--'~,-- RESOLUTIO 
AT t=O 

Q:" 
Fig. 2. A cross section of the resolution ellipsoid in Ql,09 

space. The scan is defined as the path of Qo, co0, the nominal 
setting of the spectrometer. Q, ~ is that point where the scan 
crosses the dispersion surface. Only those values of (Q,co)= 
(Q0 + Xl + X2 + X3, O9o + X4) which satisfy the delta function 
fi(X4- W+ C~XI + C, Xz + C3X3) will contribute to the inten- 
sity. The dashed curve shows the resolution ellipsoid at a 
later point in the scan. 



N. J. C H E S S E R  A N D  J. D. AXE 163 

a(Qo+ AQ, coo+ Aco)= ~ g(Q, co) 

× 6 ( x ,  - w + G x l  + c , X ~  + G x ~ )  

_ hk~ S(Q, co). (9) 
mkt  

It is often permissible to assume that ~(Q, co) is 
constant over that volume in Q,co space where the 
resolution function is appreciable. This approximation 
is generally acceptable except near q = 0  (and perhaps 
near other Van Hove singularities) where the proper- 
ties of the excitations may vary rapidly with either the 
magnitude or direction of q, and the curvature of the 
dispersion surface becomes important. This assump- 
tion allows us to take A'(Q, co) outside the integration. 
If  we define (Q, &) as the point at which the center of 
the scan crosses the dispersion surface then from Fig. 
2 we see that at that point W = 0  and the intensity is 
maximum. The intensity I is given by the product of 
S(Q,&) and the integral of the resolution function 
over the delta function in equation (9). Letting m = h = 
1, the intensity is found to be a Gaussian with full 
width at half maximum (FWHM) equal to (21n2)1/2A. 
That is 

I = I ( Q ,  r3) exp {--1W2/zj2} 
where 

z j2 :  S1/S2 . (10 )  

Care must be taken in comparison of this expression 
with experimental data in that such comparison is 
straightforward only if the data are treated as a func- 
tion of the independent variable W. For a constant Q 
scan, W coincides with the energy and no conversion 
is necessary. The necessary conversion for other types 
of scans is discussed in § 4(D). The peak intensity, 
I(Q,&), is proportional to R0 and S ( 0 , ~ )  and hence 
is a slowly varying function of W. S1 and $2 are given 
in terms of the Mkz defined in Cooper & Nathans 
(1967) by 

& = M33 T~ 
Si = C2 T2 -Jr- M33 { Ml l  M22 - M22 - ( Ci M 2 4 -  C2M14) 2 

-k- 2Mz4( Ci M I z -  CzMI1) --t- 2 M14( C 2 M i z -  CiMz2) 
+ M44(C2M22 + C2Mii  - 2CiCzMi2)} (11 )  

where 

= MllM22M44 - M i l M 2 4  - M 2 2 M  14 - M 4 4 M 1 2  2 2 2 2 

+ 2M12Mi4M24 • 

We note that if the sample mosaic spread is large then 
Mu should be replaced by M~t as defined by Werner & 
Pynn (1971). 

If  we consider the Mk, to define the elements of a 
4 x 4 matrix M then $2 is just the determinant of that 
matrix. T2 is the determinant of the 3 x 3 submatrix 
obtained from M by omitting the vertical elements, 
i.e. of the cofactor of Ma3. 

We note that the only dependence on the slope of 
the dispersion curve in the vertical direction occurs as 
C 2 in $1. Thus the width of the peak depends only on 
the magnitude and not on the sign of the vertical slope. 
In the limit of Ca=0, A -2 becomes G 2 as defined by 
Cooper & Nathans (1967). In the same limit Si -I be- 
c o m e s  GiG2/M33. 

The integrated intensity J is given by 

"¢= I I(Q,~) exp ( - - ½ W 2 / z ~  2) d W  

= / ( O , ~ )  ]/2--n~ A=Ro [ k2 ] [ k: J S(O,(3) V (12) 

where 

V= (2n)2(Si- 1"42) 1 / 2 :  (271:)2(82)-2 ] 2  

V is the volume of the resolution ellipsoid defined as 
the locus of points where the resolution is one half 
that at the maximum point. V is independent of the 
slope of the dispersion surface. Hence, as would be 
expected, the integrated intensity of a phonon peak is 
independent of the slope of the dispersion surface. 

Substituting for R0 and V in the expression for the 
integrated intensity we find 

J =  ( 2n)3 S( O_. , &)~oeoP M P a Vv ,rv vrmrFz r 
k 3 1 

× 
tan 0a tan 0M 

where 

Fn~ = Ct0~lr/M(Ct2 + C~] + 4172)-1/2 
~2 + 4 . 2  ~ - 1/2 FHF = ~20C3/~A(~ 2 '-Jr" 3 ffA] 

F, , ,=PoPl~ + p2 + [2r/~t sin OM]2) -1]2 
Fvv=f12fla([32+f12+[Zrl'a sin 0a]2) -1/2 . (13) 

Fv, and Fvv contain all dependence on vertical terms 
before and after the sample respectively. It should be 
noted that the only dependence on Q is that contained 
in S(Q, ~). Thus intensity data for one value of q and 
09 and different values of Q can be analyzed without 
concern for resolution. As was the case with equation 
(10) this expression can be compared directly with 
experimental data only if the data are treated as a 
function of the independent variable W. 

This expression for the integrated intensity is in 
complete agreement with that of Tucciarone, Lau, 
Corliss, Delapalme & Hastings (1971) subject to the 
correction mentioned previously. 

4. Special cases 

(A) In many instances, particularly for diffuse elastic 
scattering as well as for phonons on an optic branch 
or near a zone boundary, the slope of the dispersion 
curve approaches zero. This limit greatly simplifies the 
expressions given above. Since the integral intensity is 
independent of slope, calculation of zJ 2 in the limit of 
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zero slope is sufficient to determine both the width 
and the peak height in that limit through knowledge 
of the integrated intensity. 

In the limit of C~ = 0 the width becomes 

A 2 _ . =  k4Be + k4B1 

where 

( 1 1 1 ) F2v/tan20a (14) 

( ! )~]1 ~21) B,=  r/fu + + FZ'/tan2 0M. 

(B) With the usual arrangement of tight horizontal 
collimation and relaxed vertical collimation, the vertical 
terms can be simplified by an approximation. In the 
limit that fl~ >> r/j for all elements on the same side of 
the sample, the vertical terms become Fv~=fl and 
FvF =fl' where fl and fl' are effective collimations given 
by ~ - - 2 = ~ O 2 - J v ~ i " 2  and ~ t - - 2 = ~ 2 2 - t - ~ 3 2 .  

(C) In most experiments, a monitor is placed just before 
the sample and all measurements are made as a func- 
tion of a constant monitor count. In this case, inten- 
sities as defined above must be modified by division 
by the integrated intensity at the monitor. This quantity 
is found by dropping all those terms in J arising from 
elements after the monitor• Dropping factors of 2re, 
this is just 

J(monitor)  = rpPMFmFweMk~/tan OM • (15) 

eM is the efficiency of the monitor. This results in a 
measured integrated intensity, 

1 
. % =  [eoleM]PAFv.F.  [k,~/tan 0A]. 

(16) 

The width will, of course, be unaffected by insertion of 
the monitor. 
(D) As was pointed out earlier, the expressions derived 
here treat W as the independent variable and com- 
parison with data is straightforward only if the data 
are treated as a function of that variable. Examination 
of Fig. 2 reveals that for a constant Q scan, W is just 
the energy, the usual choice of variable. Further 
examination reveals that for any other type of scan, 
some conversion must be made since W will also 
depend on Q. This conversion is discussed in detail 
by Sears & Dolling (1972). For a constant energy 
scan, W differs from Q, the usual choice of independent 
variable by a factor of C, the slope of the dispersion 
curve. Thus the width as a function of Q will be A '=  
A/I CI and the integrated intensity must be converted 
by the same factor. 

5. Experimental verification 

In the harmonic approximation, S(Q, oJ) for a crystal 
with one atom per unit cell can be written 

S(Q,c°)=Co(Nj+} T½) e-2"(°) IQ. esl 2 (boos)-' 
x &(co + cofiq))&(Q- G -  q) (17) 

where G is a reciprocal lattice vector, ej is the phonon 
polarization vector associated with the j th  branch of 
the dispersion curve, coj is the corresponding frequency, 
W(Q) is the Debye-Waller factor, Nj is the Bose- 
Einstein occupation number (exp [hcos/ksT ] -  1) -1, Co 
is a constant. The upper sign refers to phonon annihila- 
tion, the lower to phonon creation. 

Substituting this expression into equation (16) for 
the measured integrated intensity we find 

where 
J . = CoF, oFoF, IFkFFv 

F.,=( Nj + ½ -T ½)/hoJj 
F o = I Q .  esl2e -2w(°~ 
Fkl = 1/kl 
Fkp = ka/tan 0A 

(18) 

This form of the integrated intensity collects the 
explicit dependence on he), Q, kl, kF, and horizontal 
and vertical collimations into separate factors. 

To verify these relations, we have carried out a 
series of measurements using the Brookhaven triple- 
axis spectrometers. Preliminary measurements were 
made to determine the reflectivity of the analyzer and 
the efficiencies of the monitor and detector for the 
specific elements used in the experiment. 

Determination of the reflectivity of the pyrolytic 
graphite analyzer was carried out using a perfect 
germanium crystal in the sample position. The 111 
reflection of Ge was used to measure PA for the 002 
reflection of the analyzer while the 311 reflection was 
used to measure the 004 reflectivity. These reflections 
were chosen to match the sample and analyzer angles 
as nearly as possible, as well as to remove any higher 

2O 

0 
I--- 

...l 
60 

re" 

4 0  

6 0 - -  REFLECTIV ITY  OF 
PYROLYTIC GRAPHITE 

0 0 4  

I I I 1 I I I 
REFLECTIV ITY  OF 
PYROLYTIC GRAPHITE 

OO2 ..%. 

......~ 

4 0 -  

2 0 -  

0 I I I I I I I I = 
0 I0 20  30  4 0  5 0  6 0  7 0  8 0  

ENERGY (meV) 

Fig. 3. The reflectivity (PA) of pyrolytic graphite as a function 
of energy. 
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order contamination in the beam. Twenty minute 
(FWHM) horizontal collimation was used in both 
positions before the sample. Twenty minute vertical 
collimation was placed between the sample and the 
analyzer. The analyzer-to-detector region was left 
open. The energy was varied by rotating the mono- 
chromator, a bent pyrolytic graphite crystal set for the 
004 reflection. The reflectivity at a given energy was 
obtained by taking the ratio of the intensity with the 
analyzer in position to that with the analyzer removed. 
The results are shown in Fig. 3. The sharp dips result 
from competing Bragg reflections as discussed by 
Shapiro & Chesser (1972). 

Determination of eM/eo was then made by moving 
the monitor to a position directly in front of the 
detector. Monitor counts vs. detector counts were 
recorded as a function of energy. This ratio differed 

35 

[~o] 
30 

25 

Io 

5 

o I I I 
1.0 0.5 ~ ( 

[~]  

0.0 ~ .-~ 0.5 

Fig. 4. Phonon  dispersion curves for copper  at r o o m  tem- 
perature.  Solid lines represent  the da ta  of  Nicklow et aL 
(1967). Closed circles indicate phonons  whose intensities 
were measured  in this study. 

I I I I I 
4 6 8 I0 12 14 16 

Jfiw (meV) 

I I I x . I  I I I_ ~ 0.60, 0.60, 4.00) =Q/a "~ 
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m 

(I.90, 1.90,1.90)=Q/o "~ 

Fig. 5. Typical  fits to p h o n o n  data  for r o o m  tempera tu re  
copper .  Solid line is a non- l inear  least-squares fit to a Gaus-  
sian with variable height, width and center,  plus background .  

from the expect 1/V(V is the velocity of the neutron) 
only at energies greater than 60 meV. We have as- 
sumed therefore that the monitor efficiency is propor- 
tional to 1IV for all energies and that the detector is 
black (efficiency= 1.0) for energies less than 60 meV. 
For energies above that limit, the detector efficiency is 
given by the deviation of the measured ratio from 1IV. 

The phonon intensity experiments were carried out 
using a cylindrical sample of copper with mosaic spread 
of four minutes. The initial energy was selected by a 
Ge (311) monochromator.  The final energy was 
determined by the pyrolytic graphite analyzer whose 
reflectivity had been measured earlier. Horizontal 

Table 1. Parameters for sets 

Tested dependence Q/a* Et(meV) 
Q Maximally Minimally 

varied varied 
kt Minimally Maximally 

varied varied 
ct (2.10, 2.10, 2.10) ,,,40 
,8 (2-10, 2-10, 2.10) ,-,40 
kr Minimally 52 

varied 
tan 0A Minimally 52 

varied 

Ev(meV) 
30 20-20 > 60 002 

30 20-20 > 60 002 

30 Varied > 60 002 
30 > 60 Varied 002 
Maximally 20-20 > 60 002 
varied 
Maximally 20-20 > 60 004 
varied 

of scans on a copper sample 

cq-~3(minutes) fl2-fl3(minutes) Analyzer reflection 
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collimation was twenty minutes (FWHM) throughout, 
vertical collimation was relaxed. All measurements 
were carried out at room temperature. 

The data were taken so as to form sets of scans in 
which one parameter was varied over a wide range and 
the other parameters were confined to as narrow a 
range as was possible. The parameters of these sets 
are listed in Table 1. The first sets of measurements 
were made for phonon creation at a constant final 
energy of 30 meV. To examine the Q dependence of 
the integrated intensity, two longitudinal phonons 
were taken at different values of G, the reciprocal 
lattice vector. That is ,measurements were made at one 
value of q, and hence one value of he), and several 
values of Q. Next, several phonons were taken along 
two branches of the dispersion curve to test the 
dependence on kt. These are indicated on the dispersion 
curves shown in Fig. 4. Using the phonon at Q = (2.10, 
2.10, 2.10) and ho)_ ~ 10 meV we measured the intensity 
for six combinations of horizontal collimation. By 
turning the Soller collimators after the sample on their 
sides, we then measured the intensity for six combina- 
tions of vertical collimation. 

The remaining data were taken at a constant initial 
energy of 52meV. First, using the 002 reflection of the 
analyzer, the phonons used to test kt above were 
retaken to examine the kv dependence. Measurements 
were made for phonon creation and annihilation to 
increase the range of kv tested. Then, changing to the 
004 reflection of the analyzer, about half of the 
measurements were repeated to distinguish the 
dependence on tan 0a as opposed to dependence upon 
ke. Each run with varying kr was corrected point by 
point for the reflectivity of the analyzer. 

The data were then computer-fitted to a Gaussian 
plus background using a non-linear least-squares 
program. Typical fits are shown in Fig. 5. The phonon 
energies, as shown in Fig. 4, are in good agreement 
with those of Nicklow, Gilat, Smith, Raubenheimer & 
Wilkinson (1967). The area of the fitted Gaussian 
was taken to be the measured integrated intensity. 
Each area for a constant initial energy scan was cor- 
rected for detector efficiency appropriate to the final 
energy at the center of the peak. Each area for a 
constant-final-energy scan was corrected for monitor 
efficiency appropriate to the initial energy at the center 
of the peak. 

The value of the constant Co was determined by 
normalizing one standard phonon in each set of runs 
to the value given by equation (22). Each measured 
area was then divided by the value predicted by that 
expression. The results of that division, Iobs/Icalc, are 
shown as a function of phonon energy in Fig. 6. On 
the average, the observed value is within 10% of the 
calculated integrated intensity. This is consistent with 
the experimental uncertainties in the measured inten- 
sities as determined by the fitting program. Bearing in 
mind that the raw data vary by as much as a factor of 
50, the agreement in Fig. 6 is quite good. We have 

taken the lack of systematic deviation in that figure to 
indicate that the dependence on he) is as predicted. 

Fig. 7 shows the dependence on Q for longitudinal 
phonons. The Debye-Waller factor for room tem- 
perature copper is taken to be 

W(Q) = (0.0105) × (Q/a*) 2 
a*= 1.741 A -1 (19) 

as computed from the measurements of Owen & Wil- 
liams (1947). Fig. 8 shows the explicit dependence on 
kl for two branches of the dispersion curve. The 
scatter in these two figures is within reasonable limits 
and verifies the expected dependence on Q and on kl. 
A least-squares fit to the exponent of k~ for the data in 
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Fig. 8 gives a value of - 0.9 + 0.3. Thus the dependence 
on Q and kz is verified. 

Figs. 9 and 10 show, the dependence on horizontal 
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and vertical collimation respectively. As is shown by 
the dashed curves, it is important to consider the 
blocking effect due to the finite thickness of the colli- 
mator vanes. This effect is discussed in detail by Ros- 
sitto & Poletti (1971). 

Fig. 11 shows the results of the measurements car- 
ried out at a constant initial energy. The dependence 
of the integrated intensity on kr  and on tan 0A is 
adequately verified. The consistency of these data gives 
added confidence to the method used to correct for 
analyzer reflectivity and for detector efficiency. 

The expression derived above for the measured 
integrated intensity has been verified and can be used 
to correct data for resolution effects. If the collimation 
is unchanged within an experiment, a single normal- 
ization should suffice for all data. Whenever the col- 
limation after the sample is changed, however, a 
normalization check would seem to be good procedure 
since the variation with those parameters is not com- 
pletely explained. The difficulty can sometimes be 
avoided by changing the collimation before the monitor 
since the monitor will perform the normalization 
automatically. 

Comparison of constant initial energy data to 
constant final energy scans suggests a slight advantage 
in favor of constant final energy (an average error of 
7% as opposed to 11% for constant initial energy). 
There is also the obvious experimental advantage that 
the monitor automatically removes the kx dependence 
and that no measurement of analyzer reflectivity need 
be performed. Care must be taken, however, to remove 
higher-order contamination before the monitor since 
the extent of this contamination will vary with energy. 
It must be noted that many spectrometers are not 
equipped to vary kv This experiment proves that this 
restriction does not prohibit measurements of inte- 
grated intensities. 

We would like to thank Professor Robert  Nathans 
for a critical reading of the manuscript. We would also 
like to thank Dr F. W. Young Jr and Dr R. M. Nick- 
low at Oak Ridge National Laboratory for the excel- 
lent copper crystal. We are grateful for many beneficial 
discussions with our colleagues, particularly Dr G. 
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APPENDIX 

It should be noted that there are several typographical 
errors in the references used. The following should be 
corrected to read: 
Cooper & Nathans (1967) 

a2t =[(4 sin 20M~lg+flz)-l+(f12)-l]k? 2 (55a) 

a~2= [(4 sin 20,4r/~t 2 + flsz) -~ + (fl~)-a]k72 • (55b) 

Iw=  R o 2 r c R a a ~  exp {-½G2W 2} (66) 
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632 = M 4 4 - -  G 1 ( M 1 4 -  C 1 M44) 2 36 

-- Gz(C2M44 --  M24 + Gl[M14 - C, M44 ] 
× [Mlz-- C I M 2 4 -  C2MI4-I- CIC2M44]) 2 . 32 

(67d) 

Tucciarone, Lau, Corliss, Delapalme & Hastings (1971) z0 - 

D _  rcePMPA (1 1 )  -1/z 
0-- 2-sin 0-M s]n-o~ #~- + 4 sin 2 0Mr/~ 

x + 4 sin 20arl'a 2 

, ) + + ~, + ~ 

× 2,,kF ~ot OA ~ + -~  ~ + ~ + -~- 

(1 2)~]-" -- ~ + ~ -  . 

[ 1 1]-"~ 
x 2~ 4 sin 2 0Mr/~ +f lo  2 + N -  

x 4 sin 2 o~7+#i + N (5.1o) 

A V=(2rc)ak~k 3 sin (20s)A 'm (az~ + ax22)~/2 
at~a~2 l 

1400 

x cot 0M [ ( _ ~  + ~ - 4 ) ( _ ~  + c ~  - + 1  __~) 
1200 

- + 

z I000 

X COt 0A [ ( 1 _  4 )  (~_z a 1 1 )  + ~ -  + ~-7+~ .~ 
800 

uJ 
I- ! 

- - z  .... (5"12) ~ 600  
~3 N I 

These are in addition to the error noted in § 2. = 
~) 400  
7 
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Coincidence-Site Lattices 
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Coincidence-site lattices are characterized mathematically, in the general case, by a method that can 
be applied to a pair of original lattices of any symmetry, either metrically identical or metrically different, 
does not involve inspection and is readily adaptable to computer calculations. The procedure is illus- 
trated by several numerical examples. The proposed characterization of coincidence-site lattices is 
based on the theory of derivative lattices and makes extensive use of the concepts of superlattice and 
sublattice. Appended is a simple procedure for determining the transformation matrices needed to 
generate superlattices and sublattices of any multiplicity. 

Introduction 

In recent years field-ion and electron-microscopy stu- 
dies have shown that, in many materials of metallur- 
gical interest, the two crystals forming a grain bound- 
ary are often mutually oriented so that they have a 
common superlattice which continues without distur- 
bance from one crystal to the other. This superlattice 
is called coincidence-site lattice and the two crystals 
adjacent to the boundary are said to be in a coincidence- 
site relationship or coincidence-site related. The occur- 
rence and importance of coincidence-site lattices was 
first pointed out by Kromberg & Wilson (1949) in 
their study on secondary recrystallization of copper. 
Since then the concept of coincidence-site lattice has 
been used in the study of the 'structure' of grain bound- 
aries (Brandon, Ralph, Ranganathan & Wald, 1964; 
Brandon, 1966; Morgan & Ralph, 1967) and in con- 
nection with such subjects as grain-boundary migration 
in high-purity materials (Aust & Rutter, 1959) and 
nucleation and growth of boundary precipitates (Un- 
win & Nicholson, 1969). 

The interpretation of experimental results in terms 
of the coincidence-site lattice model requires the 
knowledge of the geometrical conditions under which 
two crystals are coincidence-site related. The problem 
of characterizing mathematically two identical lattices 
of any symmetry and randomly oriented with respect 
t o  each other has been treated by Goux (1961) and 

Lange (1967). Ranganathan (1966) has given a method 
for determining the axis and the angle of the rotation 
necessary to bring two identical cubic lattices, initially 
coincident, into a coincidence-site relationship and 
Ranganathan (1967) and Acton & Bevis (1971) have 
presented comprehensive tables of the angle-axis pairs 
for the cubic system. The proposed procedure involves 
several stages of inspection and can only be applied to 
cubic crystals of the same species. 

The mathematical characterization of a coincidence- 
site lattice of any symmetry and for lattices differing 
metrically as well as in orientation, may be useful in 
the analysis of a great variety of grain boundaries and 
in the study of regular aggregates such as twins and 
epitaxic and syntaxic intergrowths. As part of a sys- 
tematic study of the geometrical properties of lattices, 
a method for the determination of coincidence-site 
lattices in the general case has been derived. It is essen- 
tially an application of the theory of derivative lattices, 
and its use requires the systematic derivation of super- 
lattices and sublattices of any multiplicity. This deriva- 
tion can be made either by means of the procedure 
proposed by Santoro & Mighell (1972) or, more simply, 
by means of the method presented in the Appendix to 
this paper. 

General 

Two lattices A' and A" can be coincidence-site related 
if, and only if, two superlattices, F '  derived from A' 


